We can derive expressions and equations from sentences, and also we can derive formulae such as area and volumes, or quadratics. In this video, we're going to look at deriving formulae. You are usually given information in a diagram or sentences and asked to "show that". Ignore the "show that" as that is the final answer that we're trying to get to. Use the information given to create an equation, which then usually will need rearranging to get to the 'show that' answer. Take these questions step by step, and do not pay much attention to the "show that" information until the end. If in the question you are told the area for example, then that will be what your equation equals and you need to create an expression to find the area.
Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT.
VISIT us at www.fuseschool.org, where all of our videos are carefully organised into topics and specific orders, and to see what else we have on offer. Comment, like and share with other learners. You can both ask and answer questions, and teachers will get back to you.
These videos can be used in a flipped classroom model or as a revision aid.
Twitter: https://twitter.com/fuseSchool
Access a deeper Learning Experience in the FuseSchool platform and app: www.fuseschool.org
This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: info@fuseschool.org
Click here to see more videos: https://alugha.com/FuseSchool
Transcript: alugha
Learn about graphs. In this introductory video we will introduce coordinates, quadrants and the two axis: x-axis and y-axis.
Click here to see more videos: https://alugha.com/FuseSchool
VISIT us at www.fuseschool.org, where all of our videos are carefully organised into topics and specific orders
Let’s discover some more circle theorems so that we can solve all types of geometrical puzzles.
We discovered these 4 theorems in part 1:
Angle at the centre is double the angle at the circumference
The angle in a semi-circle is 90 degrees
Angles in the same segment are equal / Angles subtended by
Click here to see more videos: https://alugha.com/FuseSchool
If we don't have the vertical height of a triangle, then we can find the area of the triangle using 1/2absinC.
In this video we are going to discover where this formula comes from. The formula is based on area = 1/2 base X height and a